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Abstract
Two-component Bose–Einstein condensates are considered within a number
conserving version of the Bogoliubov theory. We show that the Bogoliubov
vacuum state can be obtained in the particle representation in a simple form. We
predict considerable density fluctuations in finite systems close to the phase-
separation regime. We analyze homogeneous condensates and condensates in
a double-well potential.

PACS numbers: 03.75.Mn, 03.75.Hh

1. Introduction

Bose–Einstein condensate (BEC) is a unique state of a many particle system where, ideally,
all particles occupy the same single-particle state. It is obviously possible for bosons only,
and experimentally it can be realized in ultra-cold dilute atomic gases [1]. Since the first
experimental realization numerous different phenomena involving BEC have been investigated
and nowadays it is also possible to obtain mixtures of BECs or even mixtures of ultra-cold
bosonic and fermionic gasses [2]. Two-component BEC [2] can reveal number of interesting
phenomena, e.g., phase separation [3, 4], self-localization [5], condensate entanglement [6, 7]
or internal Josephson effects [8].

In an infinite homogeneous system the phase separation occurs abruptly once interactions
reach their critical values [4, 8]. In the present paper we show effects of a finite system. That
is, in a finite box there is a region close to critical values of the coupling parameters where
substantial density fluctuations can be observed.

A standard theoretical description of a single condensate and condensate mixtures starts
with the mean-field Gross–Pitaevskii equations [9] that provide estimates for ground states
and collective excitations of a system but under an assumption that it is described by perfect
condensate product states. Particle interactions, however, can lead to substantial depletion of
the condensates [1] and in order to obtain a more realistic picture usually a Bogoliubov theory
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is applied, which allows one to describe small quantum corrections to the mean-field solution
[1, 10–12]. The key idea of the original Bogoliubov theory [10] (usually used in the BEC
field) is the U(1) symmetry breaking approach where the atomic field operator is assumed to
have a nonzero expectation value. This coherent state necessarily involves superposition of
states with different numbers of atoms, an assumption very far from experimental reality.
Moreover, careful analysis of the original theory shows that the Bogoliubov–de Gennes
equations correspond to an eigenvalue problem of an operator which is not diagonalizable
and the theory must break down after a finite time [11, 13].

To overcome these drawbacks we employ a number conserving version of the Bogoliubov
theory, which has been presented by Castin and Dum [11] (see also [12]) for a one-component
BEC and generalized to a two-component system by Sørensen [7], and analyze the Bogoliubov
vacuum state of a mixture of two BECs. The two theories should give the same physical
predictions for large particle numbers. There are, however, examples of systems where the
N-conserving theory works in a regime of the standard theory breakdown [14]. The Bogoliubov
vacuum is usually obtained in the quasi-particle representation where quantum depletion, i.e.
the number of particles occupying non-condensate modes can be easily calculated for a given
system [1, 10–12]. To gain insight into the form of the ground state of the system, we derive the
Bogoliubov ground state in the particle representation. This enables us to perform simulations
of density measurements in single experiments [15–17].

For a single condensate the Leggett ansatz of the vacuum for translationally invariant
systems [18] has been shown to be valid in any inhomogeneous condensates in [14, 16]. In
the present paper, we show that the ansatz can be used also in the two-component case even in
the presence of the inter-species interaction. The obtained Bogoliubov vacuum state is then
used in an analysis of density fluctuations in 3D homogeneous condensates and in condensates
trapped in a double-well potential. It turns out that vicinity of the critical point for the phase
separation is especially interesting because the fluctuations there become considerable.

The paper is organized as follows. In section 2, we present the solution for the Bogoliubov
vacuum state in the particle representation, derived within the number conserving version of
the Bogoliubov theory. In section 3, we describe a procedure used later to perform density
measurement simulations. The theory is applied to the analysis of homogeneous condensates
in section 4 and to the double-well problem in section 5. We conclude in section 6. Short
reminder of the Bogoliubov theory [7] is presented in appendix A and details of the derivation
of the Bogoliubov vacuum state in the particle representation are presented in appendix B.

2. Bogoliubov vacuum state

We consider a two-component Bose–Einstein condensate formed by a mixture of two kinds
of atoms (or the same atoms in two different internal states), i.e. Na atoms of type a and Nb

atoms of type b. The Hamiltonian of the system reads

Ĥ =
∫

d3r

(
ψ̂ †

a

[
− h̄2

2ma

∇2 + Va(�r) +
ga

2
ψ̂ †

aψ̂a

]
ψ̂a

+ ψ̂
†
b

[
− h̄2

2mb

∇2 + Vb(�r) +
gb

2
ψ̂

†
bψ̂b

]
ψ̂b + gψ̂ †

aψ̂
†
bψ̂aψ̂b

)
, (1)

where ma,mb are particle masses, Va(�r), Vb(�r) stand for the trapping potentials and

ga = 4πh̄2aa

ma

, gb = 4πh̄2ab

mb

, g = 2πh̄2aab

(
1

ma

+
1

mb

)
, (2)
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where aa, ab, aab are the scattering lengths. The number conserving Bogoliubov theory
[7, 11] assumes the following decomposition of the bosonic field operators:

ψ̂a(�r) = φa0(�r)â0 + δψ̂a(�r), ψ̂b(�r) = φb0(�r)b̂0 + δψ̂b(�r), (3)

where we separate the operators â0 and b̂0 that annihilate atoms in modes φa0 and φb0,
respectively, which are macroscopically occupied by atoms. That is, for the states we are after〈

â
†
0â0
〉 ≈ Na,

〈
b̂
†
0b̂0
〉 ≈ Nb. (4)

Corrections δψ̂a and δψ̂b are thus supposed to be small and we may perform expansion of the
Hamiltonian in powers of δψ̂a and δψ̂b. In the zero order, condition for energy extremum in
the φa0 and φb0 space leads to coupled Gross–Pitaevskii equations

Ha
GPφa0 = 0, Hb

GPφb0 = 0, (5)

where

Ha
GP = − h̄2

2ma

∇2 + Va + gaNa|φa0|2 + gNb|φb0|2 − µa,

Hb
GP = − h̄2

2mb

∇2 + Vb + gbNb|φb0|2 + gNb|φb0|2 − µb,

(6)

(with chemical potentials µa and µb) that allow us to find single-particle modes
macroscopically occupied by atoms. The first-order terms of the Hamiltonian disappear.
In the second-order one obtains an effective Hamiltonian which, employing the Bogoliubov
transformation, can be written in a diagonal form

Ĥ eff ≈
∑
n∈‘+’

Enĉ
†
nĉn, (7)

where the sum goes over the so-called family ‘+’ solution of the Bogoliubov equations (see
appendix A). The quasi-particle annihilation operators are defined as

ĉn = 〈ua
n

∣∣�̂a

〉− 〈va
n

∣∣�̂†
a

〉
+
〈
ub

n

∣∣�̂b

〉− 〈vb
n

∣∣�̂†
b

〉
, (8)

where

�̂a(�r) = â
†
0√
Na

δψ̂a(�r), �̂b(�r) = b̂
†
0√
Nb

δψ̂b(�r). (9)

The wavefunctions
{
ua

n, v
a
n, u

b
n, v

b
n

}
are solutions of the Bogoliubov equations corresponding

to eigenvalue En (see appendix A). Let us now switch to our results.
The Bogoliubov vacuum state |0B〉 is an eigenstate of the effective Hamiltonian that is

annihilated by all quasi-particle annihilation operators,

ĉn|0B〉 = 0. (10)

Other eigenstates can be generated by acting with the quasi-particle creation operators ĉ
†
n

on the Bogoliubov vacuum. The quasi-particle representation is thus natural to represent
the system eigenstates within the Bogoliubov theory. It is also suitable to obtain low-order
correlation functions. However, to get predictions for density measurements, i.e. to simulate
measurements of all atom positions, the particle representation turns out to be much more
convenient.

In appendix B we show that the Bogoliubov vacuum state can be written in the particle
representation in the following simple form:

|0B〉 ∼
[(

â
†
0

)2
+

∞∑
α=1

λa
α

(
â†

α

)2]Na/2 [(
b̂
†
0

)2
+

∞∑
α=1

λb
α

(
b̂†

α

)2]Nb/2

|0〉 (11)
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where

λa
α = 〈φaα|�̂a|φ∗

aα〉
dNa

α + 1
, λb

α = 〈φbα|�̂b|φ∗
bα〉

dNb
α + 1

. (12)

The particle creation operators â†
α

(
b̂†

α

)
create particles in modes φaα (φbα) that are eigenstates

of the single-particle density matrices, and dNa
α

(
dNb

α

)
are the corresponding eigenvalues, i.e.,

〈0B |ψ̂ †
a(�r)ψ̂a(�r ′)|0B〉 ≈ Naφ

∗
a0(�r)φa0(�r ′) +

∞∑
α=1

dNa
αφ∗

aα(�r)φaα(�r ′), (13)

and similarly for 〈0B |ψ̂ †
b(�r)ψ̂b(�r ′)|0B〉. The operators �̂a and �̂b are defined as

�̂a =
∑
n∈‘+’

∣∣ua
n

〉〈
va

n

∣∣, �̂b =
∑
n∈‘+’

∣∣ub
n

〉〈
vb

n

∣∣. (14)

The presented solution (11) is self-consistent provided the �̂a,b operators are diagonal in the
basis of the eigenvectors of the single-particle density matrices. In the following sections,
we show examples of a spatially homogeneous system and BECs in a double-well potential,
where this indeed is the case.

3. Density measurement

Average particle density corresponds to the reduced single-particle density which can be easily
calculated within the Bogoliubov theory [16]. The average density means an averaged picture
obtained by collecting outcomes of the density measurement in many experimental realizations
of a system in the same quantum state. Even at zero temperature a many-body system can
reveal density fluctuations and a single photo of the system may be significantly different from
the averaged picture [15–17].

In order to perform density measurement simulations we generally need a full many-
body probability density. As the number of particles grows, however, using this density
quickly becomes a very formidable task. Instead one may use a sequential method proposed
by Javanainen and Yoo [15]. It relies on a choice of a position of a subsequent atom with
the help of a conditional density probability which takes it into account that previous atoms
have already been found at certain positions. Note that, since this method requires acting
with particle annihilation operators on the Bogoliubov vacuum, using the Bogoliubov state in
the quasi-particle representation would require inversion of the nonlinear transformation (8).
Having the state (11) we avoid this problem.

In practice, the sequential method [15] can be used if only one (or few) non-condensate
modes are important. If many modes are relevant we should, e.g., switch to an approximate
method [16]. Suppose there are Ma and Mb modes where

�a,b
α ≡

∣∣λa,b
α

∣∣
1 − ∣∣λa,b

α

∣∣  1. (15)

Then results of the density measurements corresponding to a state of the form (11) can be
approximated by [16]

σa(�r) ∼
∣∣∣∣∣φa0(�r) +

1√
Na

Ma∑
α=1

qaαϕaα(�r)
∣∣∣∣∣
2

,

σb(�r) ∼
∣∣∣∣∣φb0(�r) +

1√
Nb

Mb∑
α=1

qbαϕbα(�r)
∣∣∣∣∣
2

,

(16)
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where

ϕaα(�r) = φaα(�r) e−iArg(λa
α)/2, ϕbα(�r) = φbα(�r) e−iArg(λb

α)/2, (17)

and real parameters qaα and qbα have to be chosen randomly, for each experimental realization,
according to a Gaussian probability density

P(qa, qb) ∼
Ma∏
α=1

exp

(
−q2

aα

�a
α

) Mb∏
β=1

exp

(
−q2

bβ

�b
β

)
. (18)

The replacement (17) is essential because it makes all eigenvalues of the �̂a,b operators non-
negative and allows writing the Bogoliubov vacuum state of the form (11) as a Gaussian
superposition over condensates which, in turn, leads directly to the predictions (16) [16].

4. Homogeneous condensates

The two-component homogeneous condensate is an example of a Bose system where the
Bogoliubov theory gives analytical results even in the presence of a process which transfers
atoms between the two components (Rabi or Josephson coupling [8]). In numerous papers,
the quasi-particle excitation spectrum is analyzed as well as its dynamical instability leading
to the phase separation [19, 8, 4]. In the present publication, we fix the number of atoms
in each component and study the Bogoliubov vacuum state in the particle representation for
interaction parameters approaching the phase-separation condition.

Suppose we deal with a condensate mixture in a box of L × L × L size with periodic
boundary conditions and all interactions are of repulsive character, i.e. ga, gb, g > 0. The
ground-state solution of the Gross–Pitaevskii equations reveals condensate wavefunctions

φa0 = 1√
L3

, φb0 = 1√
L3

, (19)

and chemical potentials

µa = gaρa + gρb, µb = gbρb + gρa, (20)

where ρa,b = Na,b/L
3 are densities of a and b components. For a homogeneous system it is

appropriate to switch to the momentum space and look for the solution of the Bogoliubov–de
Gennes equation in the form⎛

⎜⎜⎜⎜⎝
ua

k

va
k

ub
k

vb
k

⎞
⎟⎟⎟⎟⎠

ei�k·�r
√

L3
. (21)

Then, one obtains two quasi-particles for each �k with energies [4, 8, 19],

Ek,± =
⎡
⎣ω2

ak + ω2
bk

2
±
√(

ω2
ak − ω2

bk

)2
4

+
h̄2k4

mamb

g2ρaρb

⎤
⎦

1/2

, (22)

where

ω2
ak = h̄2k2

2ma

(
h̄2k2

2ma

+ 2gaρa

)
, ω2

bk = h̄2k2

2mb

(
h̄2k2

2mb

+ 2gbρb

)
, (23)

5
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and modes ⎛
⎜⎜⎜⎜⎝

ua
k,±

va
k,±

ub
k,±

vb
k,±

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝

2gEkb(Eka + Ek,±)
√

ρaρb

2gEkb(Eka − Ek,±)
√

ρaρb(
E2

k,± − ω2
ak

)
(Ekb + Ek,±)(

E2
k,± − ω2

ak

)
(Ekb − Ek,±)

⎞
⎟⎟⎟⎟⎠χ±, (24)

where

Eka = h̄2k2

2ma

, Ekb = h̄2k2

2mb

, (25)

and the normalization factor

χ± = {4Ekb

[
4EkaEkbg

2ρaρb +
(
E2

k,± − ω2
ak

)2]
Ek,±

}−1/2
. (26)

Note that in the finite box the momenta are discrete

�k = 2π

L
(nx�ex + ny�ey + nz�ez), (27)

where nx, ny, nz are nonzero integers.

The reduced single-particle density matrices are diagonal in the ei�k·�r/
√

L3 basis. However,
in order to have the �̂a,b operators also diagonal we have to switch to the basis

φa�ks = φb�ks =
√

2

L3
sin(�k · �r), φa�kc = φb�kc =

√
2

L3
cos(�k · �r). (28)

Then the Bogoliubov vacuum state in the particle representation reads

|0B〉 ∼
⎡
⎣â

†
0â

†
0 +
∑

�k
λa

k

(
â
†
�ks

â
†
�ks

+ â
†
�kc

â
†
�kc

)⎤⎦
Na/2⎡

⎣b̂
†
0b̂

†
0 +
∑

�k
λb

k

(
b̂
†
�ks

b̂
†
�ks

+ b̂
†
�kc

b̂
†
�kc

)⎤⎦
Nb/2

|0〉, (29)

where

λa
k = ua

k,+v
a
k,+ + ua

k,−va
k,−(

va
k,+

)2
+
(
va

k,−
)2

+ 1
, λb

k = ub
k,+v

b
k,+ + ub

k,−vb
k,−(

vb
k,+

)2
+
(
vb

k,−
)2

+ 1
, (30)

and the operators â
†
�ks

, â
†
�kc

, b̂
†
�ks

and b̂
†
�kc

create atoms in the modes (28).

In the case of the infinite box (i.e. for L → ∞) if g2 > gagb uniform solutions of
the Gross–Pitaevskii equations become unstable—mixing of the a and b components is not
energetically favorable and the phase separation occurs [4, 8, 19]. It manifests itself in the
appearance of an imaginary eigenvalue in the Bogoliubov spectrum (22). In the case of a
finite box, the minimal value of the momentum becomes 2π/L and the condition for the phase
separation is modified,

g2 >

(
h̄2π2

maL2

1

ρa

+ ga

)(
h̄2π2

mbL2

1

ρb

+ gb

)
, (31)

which shows that for a finite system the minimal value of the parameter g leading to the phase
separation has to be greater than the corresponding value for L → ∞.

In figure 1 we show average numbers of atoms depleted to the modes (28) and values of
the corresponding λ

a,b
k , equations (30), far from the phase separation. The data correspond to a

mixture of 87Rb atoms in two different internal states, Na = 5000, Nb = 20000, L = 50 µm,
aa = 108.8a0, ab = 109.1a0 and aab = 10a0, where a0 is the Bohr radius [20]. The value of

6
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Figure 1. Panel (a) presents condensate depletion, i.e. number of atoms depleted from a condensate
wavefunction, dN

a,b
k = (v

a,b
k,+)2 +(v

a,b
k,−)2, to modes (28). Panel (b) shows the corresponding values

of the parameters λ
a,b
k , equations (30). Circles are related to the BEC component a while crosses

to the component b. The results correspond to the parameters far away from the phase separation,
i.e. Na = 5000, Nb = 20 000, L = 50 µm, aa = 108.8a0, ab = 109.1a0 and aab = 10.0a0, where
a0 is the Bohr radius.

the latter scattering length can be adjusted by means of a Feshbach resonance [4]. To obtain
predictions for atomic density measurements one has to change phases of the modes, see (17),
which in the present case of all negative λ

a,b
k leads to

ϕa�ks = φa�ks e−iArg(λa
α)/2 = iφa�ks, ϕb�ks = φb�ks e−iArg(λb

α)/2 = iφb�ks, (32)

and similarly for the ϕa�kc and ϕb�kc modes. Due to the fact that φa0 and φb0 are real and all the
ϕ modes are purely imaginary, we obtain, see (16),

σa(�r) ∼ φ2
a0(�r) +

1

Na

∣∣∣∣∣
Ma∑
α=1

qaαϕaα(�r)
∣∣∣∣∣
2

, σb(�r) ∼ φ2
b0(�r) +

1

Nb

∣∣∣∣∣
Mb∑
α=1

qbαϕbα(�r)
∣∣∣∣∣
2

. (33)

Because q2
aα ∼ �a

α

/
2, q2

bα ∼ �b
α

/
2 and �a,b

α � Na,b the density fluctuations turn out to be
negligible, i.e. the density remains almost perfectly flat.

Figure 2 shows similar data as figure 1 but for aab = 193.9a0, i.e. chosen so that the
phase-separation condition in an infinite system would be already fulfilled but it is still not
fulfilled in the case of the finite box. The numbers of atoms depleted are not dramatically
greater than those in the case considered previously but now some values of λ

a,b
k become

positive. The latter has dramatic consequences for density fluctuations because the modes ϕ

corresponding to the positive λ
a,b
k are real and their contributions to the atomic density are of

order of
√

�a,b
α

/
Na,b. Indeed, the predictions for atomic density measurements (neglecting

7
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Figure 2. The same as figure 1 but for conditions close to the phase separation, i.e. aab = 193.9a0.

contributions of order of �a,b
α

/
Na,b) show that

σa(�r) ∼ φ2
a0(�r) +

2φa0(�r)√
Na

∑
�k

′
[qa�ksϕa�ks(�r) + qa�kcϕa�kc(�r)],

σb(�r) ∼ φ2
b0(�r) +

2φb0(�r)√
Nb

∑
�k

′
[qb�ksϕb�ks(�r) + qb�kcϕb�kc(�r)],

(34)

where
∑

�k
′ runs over modes corresponding to positive λ

a,b
k only. In each experimental

realization one has to choose qa�ks, qa�kc, qb�ks and qb�kc randomly according to the probability
density (18). In figure 3, we show a few examples of the simulations for atoms belonging to
the a component together with the averaged result (which corresponds to the reduced single-
particle density)—the figure presents the densities integrated over y and z directions. Despite
the small number of atoms depleted to the lowest momentum mode (∼0.3%) the changes of
the density are of order of 10%. Standard deviations of the largest scale density fluctuations
(i.e. corresponding to the quasi-particles with the momentum k = 2π/L) behave like√

�
a,b
k

Na,b

∼ 1(
ac

ab − aab

)1/4 , (35)

where ac
ab is the critical value for the phase separation. Exactly at the critical point the

Bogoliubov theory breaks down, which is indicated, e.g., by the divergence of the fluctuations
in equation (35). For the parameters chosen in figures 2–3 we are, however, sufficiently far
away from the critical point so that the predictions on the basis of the Bogoliubov theory are
reliable.

From the experimental point of view it is important that the density fluctuates on a scale
of the order of L. One may use low resolution in the density measurements so that statistical

8
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Figure 3. Solid curves show predictions for results of density measurements of atoms belonging
to the a component—the densities integrated over y and z directions, i.e. L

∫
σa(�r) dy dz, are

shown. Thick solid line denotes the density averaged over many experimental realizations (i.e.
the reduced single-particle density) while dashed lines indicate the average density plus/minus
standard deviation that is equal to 2

√
�a

k/Na ≈ 0.1 (where k = 2π/L).

fluctuations will be practically eliminated and the only density modulations will correspond
to the fluctuations considered here.

In the example considered, the range of aab where one deals with positive λ
a,b
k is about

10 × Bohr radius, which should be wide enough to enable experiments with the density
fluctuations (35).

Note that the structure of the Bogoliubov vacuum state (29) shows that there are
no correlations between atoms belonging to the different components. Recently in [21],
Bogoliubov vacuum of the form of (11) has been used in a two-component system in the
case when the inter-species interaction is absent, g = 0, and the components become fully
independent. Our analysis indicates that the Bogoliubov vacuum possesses the same form
even in the presence of the inter-species interaction. Of course, the interaction changes the
Bogoliubov modes and influences the values of λa,b

α .

5. Double well

In the present section, we will consider a simple model where there are analytical solutions
within the Bogoliubov theory both in the miscible and in the phase-separated regime.

Let us consider a two-component Bose–Einstein condensate in a one-dimensional
symmetric double-well potential under an assumption that the Hilbert space of the system
is restricted to ground states in each well only (i.e. within the two mode approximation). For
experimental realizations of the double-well problem see [22]. The Hamiltonian of the system,
if we choose real functions as the ground states in the two wells, reads

Ĥ = −�

2

(
Â

†
1Â2 + Â

†
2Â1 + B̂

†
1B̂2 + B̂

†
2B̂1
)

+
U

2

[(
Â

†
1Â1
)2

+
(
Â

†
2Â2
)2

+
(
B̂

†
1B̂1
)2

+
(
B̂

†
2B̂2
)2]

+ Uab

(
Â

†
1Â1B̂

†
1B̂1 + Â

†
2Â2B̂

†
2B̂2
)
, (36)

where the Â1 (B̂1) operator annihilates an atom belonging to the component a (b) in the first
well and the Â2 (B̂2) operator annihilates an atom of the a (b) component in the other well.
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For the calculations we have chosen potential wells situated at x = −2, 2 and with such widths
that the ground states of the wells are

ψ1(x) =
(

2

π

)1/4

e−(x+2)2
, ψ2(x) =

(
2

π

)1/4

e−(x−2)2
. (37)

The parameter � stands for the frequency of the tunneling of atoms between the two wells
and U and Uab describe intra- and inter-condensate interactions. We will consider the case of
symmetric BEC components, i.e. N ≡ Na = Nb = 1000,� = 5000, U = 1 and Uab > 0
(i.e. all interactions are of repulsive nature), but similar analysis can be easily performed
for Na �= Nb and for tunneling frequencies and intra-species interactions different for both
components.

We would like to mention that in the limit of large attractive interactions a two-component
entanglement has been found in the system [23].

5.1. Mean-field solutions

For Uab smaller than the critical value

Uc
ab = �

N
+ U, (38)

the ground-state solution of the Gross–Pitaevskii equations (5) reveals both condensates
symmetrically located in the double-well potential,

φa0(x) = φb0(x) = 1√
2
[ψ1(x) + ψ2(x)], (39)

i.e. we are in the miscible regime. However, if the parameters of the system fulfill Uab > Uc
ab

the solution (39) is unstable—the spatial overlap of the atomic clouds of the different
components becomes energetically not favorable (see figure 4(a)) and the phase separation
begins. The condensate wavefunctions are then

φa0(x) = αψ1(x) + βψ2(x), φb0(x) = βψ1(x) + αψ2(x), (40)

where

α =
√

1 +
√

1 − γ 2

2
, β =

√
1 −

√
1 − γ 2

2
, (41)

and

γ ≡ �

N(Uab − U)
. (42)

Note that in the phase-separation regime there are two ground-state solutions, for exchanging
α ↔ β in (40) one obtains another solution of the Gross–Pitaevskii equations. On the basis of
these two solutions two different Bogoliubov vacuum states can be obtained. In the following,
we will show that sufficiently far away from the critical point the ground state of the system
can be approximated by preparing a superposition of the two Bogoliubov vacuum states.

5.2. The Bogoliubov vacuum—miscible regime

The solution of the Bogoliubov–de Gennes equations reveals two quasi-particles corresponding
to energies

E± = [�(� + NU ± NUab)]
1/2 , (43)
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Figure 4. Panel (a): dashed line shows mean-field energy of the symmetric Gross–Pitaevskii
solution (39) while solid line denotes the energy of the asymmetric solution (40) which appears
in the phase-separation region. Panel (b) shows depletion of the condensates while panel (c) the
corresponding values of λa,b . Note that, since we consider symmetric interactions, the depletions
are equal for both components and λa = λb .

and modes, ⎛
⎜⎜⎜⎜⎝

ua
±(x)

va
±(x)

ub
±(x)

vb
±(x)

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝

(� + 2E±)φa1(x)

(2E± − �)φa1(x)

(� + 2E±)φb1(x)

(2E± − �)φb1(x)

⎞
⎟⎟⎟⎟⎠χ±, (44)

where

φa1(x) = φb1(x) = 1√
2
[ψ1(x) − ψ2(x)] (45)

and

χ± = 1

4
√

�E±
(46)

is the normalization factor.
The Bogoliubov vacuum state can be written in the form (11) using

λa = λb =
(
4E2

+ − �2
)
χ2

+ +
(
4E2

− − �2
)
χ2

−
1 + (2E+ − �)2χ2

+ + (2E− − �)2χ2−
. (47)

The parameters (47) and the depletion are shown versus Uab in figure 4.
As can be seen from the quasi-particle excitation energy (43), when the condition

Uab > Uc
ab is fulfilled, the spectrum is no longer real and the solution (39) becomes unstable.

The ground state of the Gross–Pitaevskii equations shows separation of the atomic clouds of
the a and b components.
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5.3. The Bogoliubov vacuum—phase-separation regime

Now the quasi-particle excitation energies are

E± =
{

�

2

[
�

2

(
α

β
+

β

α

)2

+ 4Uαβ

]
± 2�Uabαβ

}1/2

, (48)

and the quasi-particle modes, corresponding to the condensate wavefunctions (40), are
proportional to

φa1(x) = βψ1(x) − αψ2(x), φb1(x) = αψ1(x) − βψ2(x). (49)

We skip here rather long expressions for the quasi-particles since they can be easily obtained
with the help of the Bogoliubov transformation. Behavior of the component a (or b) depletion
and of the parameters λa, λb versus Uab is depicted in figure 4.

A Hamiltonian of a BEC system in a symmetric double-well potential is invariant under
the parity inversion, i.e. if we reverse coordinates of all particles the Hamiltonian does not
change. It implies that eigenstates of our system (unless there is a degeneracy) must be
also eigenstates of the parity operator. In the phase-separation regime the Gross–Pitaevskii
solutions (40) are neither even nor odd functions and the corresponding Bogoliubov vacuum,

|0B〉 ∼ [(â†
0

)2
+ λa

(
â
†
1

)2]N/2[(
b̂
†
0

)2
+ λb

(
b̂
†
1

)2]N/2|0〉, (50)

is not an eigenstate of the parity operator. Exchanging α with β one obtains another Gross–
Pitaevskii solution and another Bogoliubov vacuum state. A proper parity state can be obtained
by preparing a superposition of the two states

|0B〉 + |0B(α ↔ β)〉. (51)

The state (51) is a good approximation for the ground state of the system if we are not very close
to the critical point. That is, if we increase Uab for fixed N, the states |0B〉 and |0B(α ↔ β)〉
very quickly become practically orthogonal, and the sooner it takes place, the greater N we
choose. Note that even in the regime of these states being orthogonal, the corresponding
mean-field states (40) need not be orthogonal at all. If we are, however, far away from the
critical point also the Gross–Pitaevskii solutions have zero overlap, i.e. 〈φa0|φb0〉 ≈ 0. Then
the state (51) is a Schrödinger cat state [24] which is strongly vulnerable to atomic losses—
loss of a small number of atoms is sufficient to distort completely the coherent superposition
in (51).

At the critical point the Bogoliubov theory breaks down because higher-order terms
become dominant.

5.4. Density fluctuations

We see in figure 4 that approaching the critical point in the miscible regime the depletion of
the condensates and the Bogoliubov vacuum parameters λa(b) grow. Very close to the critical
point the depletion is very large and the Bogoliubov theory cannot be applied. However, in
the vicinity of the point there is a regime where the depletions are very small compared to the
total particle numbers and the parameters λa(b) are positive. The modes φa0, φb0, φa1 and φb1

are real and the appearance of the positive λa,b indicates (similarly as in the previous section)
that density fluctuations become considerable, i.e. of order of

√
�a,b/N ,

σa(x) ∼ φ2
a0(x) + 2

qa√
N

φa0(x)φa1(x), σb(x) ∼ φ2
b0(x) + 2

qb√
N

φb0(x)φb1(x), (52)

where qa and qb have to be chosen randomly according to (18) in order to get predictions for
the results of the density measurement in different experimental realizations.
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Figure 5. Density fluctuations of the a component in the miscible regime close to the critical point,
i.e. for Uab = 5.995. Solid line corresponds to the mean-field solution, dashed and dotted lines
are two examples of possible realizations of the experiment. The standard deviation of the density
fluctuation is

√
2�a/Nφa0φa1 ≈ 0.09φa0φa1.

A few examples of the density measurements of the a component atoms in the miscible
regime are shown in figure 5 for U c

ab − Uab = 0.005. Standard deviations of the density
fluctuations behave like√

�a

N
∼ 1(

U c
ab − Uab

)1/4 , (53)

i.e. similarly as in the homogeneous case, see (35).
On the other side of the critical point, i.e. in the phase-separation regime, we deal with a

state of the form (51) which for U c
ab − Uab = −0.005 and N = 5000 is a good approximation

for the ground state of the system, indeed |〈0B |0B(α ↔ β)〉|2 is of order of 10−8. One may also
expect (similarly as in the miscible regime) substantial density fluctuations. However, for a
superposition of the Bogoliubov vacuum states (51) we cannot simulate density measurements
with the help of the method described in section 3.

6. Conclusions

We have considered a number conserving version of the Bogoliubov theory for a two-
component Bose–Einstein condensate, with the fixed number of atoms in each component.
We have shown that the Bogoliubov vacuum state can be written in the particle representation
in a simple form, provided that eigenstates of the reduced single-particle density matrices
diagonalize the operators (14). Having the Bogoliubov vacuum in the particle representation
one can easily obtain predictions for density measurements in single experiments.

The introduced formalism has been applied to the analysis of a two-component
homogeneous condensate and a two-component condensate in a double-well potential. In
finite homogeneous systems, when parameters of the system approach a phase-separation
condition, considerable density fluctuations appear before the system becomes unstable. This
behaviour is different than in infinite systems, where the phase separation happens abruptly.
The range of the parameter values where the substantial fluctuations are observed indicates
that the results presented here can be verified experimentally.
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In the case of condensates in a double-well potential we are able to describe the system in a
vicinity of the critical point both in the miscible condensates regime and in the phase-separation
region. Considerable density fluctuations can be expected if the parameters approach the
critical values.
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Appendix A

We begin with a short reminder of the results of the number conserving version of the
Bogoliubov theory. Following [7] we will perform the perturbation expansion of the
Hamiltonian. The decomposition (3) allows us to expand the Hamiltonian in powers of
small operators δψ̂a and δψ̂b. As mentioned in section 2, minimizing the energy of the system
in the zero order we obtain coupled Gross–Pitaevskii equations (5) that allow us to find the
condensate wavefunctions φa0 and φb0. The first-order terms of the Hamiltonian disappear
and in the second order we obtain an effective Hamiltonian

Ĥ eff ≈ 1

2

∫
d3r
(
�̂†

a,−�̂a, �̂
†
b,−�̂b

)
L

⎛
⎜⎜⎜⎝

�̂a

�̂
†
a

�̂b

�̂
†
b

⎞
⎟⎟⎟⎠ , (A.1)

where

L =

⎛
⎜⎜⎜⎜⎜⎝

Ha
GP + gaNaQ̂a |φa0|2Q̂a gaNaQ̂aφ

2
a0Q̂

∗
a g

√
NaNbQaφa0φ

∗
b0Qb g

√
NaNbQaφa0φb0Q

∗
b

−gaNaQ̂
∗
aφ

∗2
a0Q̂a −Ha

GP − gaNaQ̂
∗
a |φa0|2Q̂∗

a −g
√

NaNbQ
∗
aφ

∗
a0φ

∗
b0Qb −g

√
NaNbQ

∗
aφ

∗
a0φb0Q

∗
b

g
√

NaNbQbφ
∗
a0φb0Qa g

√
NaNbQbφa0φb0Q

∗
a Hb

GP + gbNbQ̂b|φb0|2Q̂b gbNbQ̂bφ
2
b0Q̂

∗
b

−g
√

NaNbQ
∗
bφ

∗
a0φ

∗
b0Qa −g

√
NaNbQ

∗
bφa0φ

∗
b0Q

∗
a −gbNbQ̂

∗
bφ

∗2
b0Q̂b −Hb

GP − gbNbQ̂
∗
b|φb0|2Q̂∗

b

⎞
⎟⎟⎟⎟⎟⎠ ,

(A.2)

and

Q̂a = 1 − |φa0〉〈φa0|, Q̂b = 1 − |φb0〉〈φb0|. (A.3)

The �̂a(�r) and �̂b(�r) operators (9) fulfill the following commutation relations:[
�̂a(�r), �̂†

a(�r ′)
] ≈ 〈�r|Q̂a|�r ′〉, [

�̂b(�r), �̂†
b(�r ′)

] ≈ 〈�r|Q̂b|�r ′〉. (A.4)

Note that action of the �̂a and �̂b operators preserves numbers of atoms in the system.
Diagonalization of the effective Hamiltonian amounts to solving the eigenequation for the
non-Hermitian operator L (i.e. the Bogoliubov–de Gennes equations).

The L operator possesses two symmetries (similarly to the symmetries of the original
Bogoliubov–de Gennes equations [11])

u1Lu1 = −L∗, u3Lu3 = L†, (A.5)

where

u1 =
(

σ1 0
0 σ1

)
, u3 =

(
σ3 0
0 σ3

)
(A.6)
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and

σ1 =
(

0 1
1 0

)
, σ3 =

(
1 0
0 −1

)
(A.7)

are the first and third Pauli matrices, respectively. Suppose that all eigenvalues of the L
operator are real. The symmetries (A.5) imply that if

∣∣�R
n

〉 =
⎛
⎜⎜⎜⎜⎝

∣∣ua
n

〉
∣∣va

n

〉
∣∣ub

n

〉
∣∣vb

n

〉

⎞
⎟⎟⎟⎟⎠ (A.8)

is a right eigenvector of the L with eigenvalue En, then
∣∣�L

n

〉 = u3

∣∣�R
n

〉
is a left eigenvector of

the same eigenvalue En and u1

∣∣�R∗
n

〉
is a right eigenvector with eigenvalue −En.

There are four eigenvectors of L corresponding to a zero eigenvalue,⎛
⎜⎜⎝

|φa〉
0
0
0

⎞
⎟⎟⎠ ,

⎛
⎜⎜⎝

0
|φ∗

a 〉
0
0

⎞
⎟⎟⎠ ,

⎛
⎜⎜⎝

0
0

|φb〉
0

⎞
⎟⎟⎠ ,

⎛
⎜⎜⎝

0
0
0

|φ∗
b 〉

⎞
⎟⎟⎠ . (A.9)

The other eigenstates of the L operator we divide into two families ‘+’ and ‘−’, according to〈
�R

n

∣∣u3

∣∣�R
n′
〉 = ±δn,n′ . (A.10)

Having the complete set of the eigenvectors of the L we obtain an important completeness
relation

1̂ =
∑
n∈‘+’

⎛
⎜⎜⎜⎜⎝

∣∣ua
n

〉
∣∣va

n

〉
∣∣ub

n

〉
∣∣vb

n

〉

⎞
⎟⎟⎟⎟⎠
(〈
ua

n

∣∣,−〈va
n

∣∣, 〈ub
n

∣∣,−〈vb
n

∣∣) +
∑
n∈‘+’

⎛
⎜⎜⎜⎜⎝

∣∣va∗
n 〉∣∣ua∗
n

〉
∣∣vb∗

n

〉
∣∣ub∗

n

〉

⎞
⎟⎟⎟⎟⎠
(−〈va∗

n

∣∣, 〈ua∗
n

∣∣,−〈vb∗
n

∣∣, 〈ub∗
n

∣∣)

+

⎛
⎜⎜⎝

|φa0〉〈φa0| 0 0 0
0 |φ∗

a0〉〈φ∗
a0| 0 0

0 0 |φb0〉〈φb0| 0
0 0 0 |φ∗

b0〉〈φ∗
b0|

⎞
⎟⎟⎠ . (A.11)

The eigenvectors of the L operator define the Bogoliubov transformation⎛
⎜⎜⎜⎝

�̂a

�̂
†
a

�̂b

�̂
†
b

⎞
⎟⎟⎟⎠ =

∑
n∈‘+’

⎛
⎜⎜⎜⎜⎝

ua
n

va
n

ub
n

vb
n

⎞
⎟⎟⎟⎟⎠ ĉn +

∑
n∈‘+’

⎛
⎜⎜⎜⎜⎝

va∗
n

ua∗
n

vb∗
n

ub∗
n

⎞
⎟⎟⎟⎟⎠ ĉ†n, (A.12)

where the quasi-particle operators (8) fulfill the bosonic commutation relation
[
ĉn, ĉ

†
n′
] ≈ δn,n′ .

Employing the Bogoliubov transformation we obtain the effective Hamiltonian in a diagonal
form (7).

Appendix B

The Bogoliubov vacuum state |0B〉 is an eigenstate of the effective Hamiltonian (7) that
is annihilated by all quasi-particle annihilation operators. Let us show that the Bogoliubov
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vacuum can be obtained from the particle vacuum by applying some particle creation operators
d̂
†
a and d̂

†
b,

|0B〉 ∼ (d̂†
a

)Ma
(
d̂
†
b

)Mb |0〉, (B.1)

where we require that d̂
†
a and d̂

†
b commute with all quasi-particle annihilation operators [16],[

ĉn, d̂
†
a

] = 0,
[
ĉn, d̂

†
b

] = 0. (B.2)

Then the state (B.1) is indeed annihilated by all quasi-particle annihilation operators,

ĉn

(
d̂†

a

)Ma
(
d̂
†
b

)Mb |0〉 = (d̂†
a

)Ma
(
d̂
†
b

)Mb
ĉn|0〉 = 0. (B.3)

The set of equations (B.2) is solved by the particle creation operators in the form [16, 18]

d̂†
a = â

†
0â

†
0 +

∞∑
α,β=1

Za
αβâ†

αâ
†
β d̂

†
b = b̂

†
0b̂

†
0 +

∞∑
α,β=1

Zb
αβb̂†

αb̂
†
β, (B.4)

where â†
α

(
b̂†

α

)
are bosonic particle creation operators that create atoms in modes φaα (φbα)

orthogonal to the condensate wavefunction φa0 (φb0). Za
αβ and Zb

αβ are symmetric matrices to
be found.

Substituting the ansatz (B.4) into (B.2) we obtain equations

〈
va

n

∣∣φ∗
aα

〉 = ∞∑
β=1

〈
ua

n

∣∣φaβ

〉
Za

βα

〈
vb

n

∣∣φ∗
bα

〉 = ∞∑
β=1

〈
ub

n

∣∣φbβ

〉
Zb

βα, (B.5)

which, when multiplied by
〈
φaγ

∣∣ua
n

〉
and

〈
φbγ

∣∣ub
n

〉
, respectively, and summed over n, are

transformed into

〈φaγ |�̂a|φ∗
aα〉 =

∞∑
β=1

〈φaγ |Û a|φaβ〉Za
βα 〈φbγ |�̂b|φ∗

bα〉 =
∞∑

β=1

〈φbγ |Û b|φbβ〉Zb
βα, (B.6)

where

Û a =
∑
n∈‘+’

∣∣ua
n

〉〈
ua

n

∣∣, Û b =
∑
n∈‘+’

∣∣ub
n

〉〈
ub

n

∣∣, (B.7)

and �̂a,b are defined in (14). The completeness relation (A.11) implies that the �̂a and �̂b

operators are symmetric and that

Û a =
∑
n∈‘+’

∣∣va∗
n

〉〈
va∗

n

∣∣ + 1̂a
⊥, (B.8)

Û b =
∑
n∈‘+’

∣∣vb∗
n

〉〈
vb∗

n

∣∣ + 1̂b
⊥, (B.9)

where 1̂a
⊥ and 1̂b

⊥ are the identity operators in the subspaces orthogonal to the condensate
wavefunctions φa0 and φb0, respectively. Comparing equation (B.8) with

〈0B |ψ̂ †
a(�r)ψ̂a(�r ′)|0B〉 = Naφ

∗
a0(�r)φa0(�r ′) +

∑
n∈‘+’

va
n(�r)va∗

n (�r ′). (B.10)

we see that the Û a operator is a sum of a part of the reduced single-particle density operator
corresponding to the subspace orthogonal to the condensate wavefunction φa0 and the identity
operator 1̂a

⊥. Similar statement is true in the case of the b component. Thus, if we choose as
a basis φaα (φbα), the eigenstates of the single-particle density matrix, we get the Û a (Û b)
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operator in a diagonal form. Then one obtains immediately the solutions for the Z
a,b
αβ matrices,

i.e.,

Za
αβ = 〈φaα|�̂a|φ∗

aβ〉
dNa

α + 1
, Zb

αβ = 〈φbα|�̂b|φ∗
bβ〉

dNb
α + 1

, (B.11)

where dNa,b
α are the eigenvalues of the single-particle density matrices, that is numbers of atoms

depleted from the condensate wavefunctions to other eigenmodes. The Za
αβ, Zb

αβ, 〈φaα|�̂a|φ∗
aβ〉

and 〈φbα|�̂b|φ∗
bβ〉 matrices are symmetric. Thus, in order the ansatz (B.4) to be self-consistent

the �̂a,b operators have to be also diagonal in the basis of the eigenvectors of the single-particle
density matrices. In sections 4 and 5 we show examples where indeed this is the case. Final
form of the solution for the Bogoliubov vacuum state in the particle representation is presented
in (11).
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